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The Rigged Hilbert Space of the Free Hamiltonian
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We explicitly construct the Rigged Hilbert Space (RHS) of the free Hamiltohign
The construction of the RHS dflp provides yet another opportunity to see that when
continuous spectrum is present, the solutions of thedlthgér equation lie in a RHS
rather than just in a Hilbert space.
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1. INTRODUCTION

There is a growing realization that the Rigged Hilbert Space (RHS) provides
the methods needed to handle Dirac’s bra-ket formalism and continuous spectrum.
Moreover, there is an increasing number of Quantum Mechanics textbooks that
include the RHS as part of their contents (Atkinson and Johnson, 2002; Ballentine,
1990; Bogolubowet al, 1975; Bohm, 1994; Capri, 1985; Galindo and Pascual,
1989); thislistis nonexhaustive. However, there is still a lack of simple examples for
which the RHS is explicitly constructed (one exception is Bohm, 1978). Especially
important is to construct the RHS generated by the &tihger equation, because
claiming that Quantum Mechanics needs the RHS is tantamount to claiming that the
solutions of the Scludinger equation lie in a RHS (when continuous spectrum is
present). The task of constructing the RHS generated by thedolger equation
was undertaken in de la Madrid (2001a). The method proposed in de la Madrid
(2001a) has been applied to two simple potentials (de la Madrid, 2002; de la Madrid
etal, 2002). Inthis contribution, we shall apply this method to the simplestexample
possible: the free Hamiltonian.

We note that the results of this paper follow immediately from those in
de la Madrid (2002) and de la Madrat al. (2002) by making the value of the
potential zero. Nevertheless, we think that the example of the free Hamiltonian
provides a very transparent way to understand the essentials of the method of
de la Madrid (2001a), because the calculations are reduced to the minimum.
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The time-independent Satdinger equation for the free Hamiltonidt,
reads, in the position representation, as
—h? 5
X|Ho|E) = —V4(X|E) = E(X|E), 1
(Iol)Zm(|> (X|E) 1)
where V2 is the three-dimensional Laplacian. In spherical coordinates
(r, 0, ¢), Eq. (1) has the following form:

-h219%  hA(l+1
<r,9,¢|H0|E,I,m) = <%Fmr + %) (I’,9,¢|E,|,m)
= E{r, 0, ¢|E, |, m). (2)

By separating the radial and angular dependences,

1
(r,0,¢lE, I, m) = (r|E) (0, ¢ll, m) = F)a(r: E)Yi,m(@, ¢), (3)
whereY| m(6, ¢) are the spherical harmonics, we obtain for the radial part

—h? d?>  h2(
(Gmare * ) 168 = £ ). @

In this paper, we shall restrict ourselves to the case of zero orbital angular
momentum (the higher-order case can be treated analogously). We then write
x1=o(r; E) = x(r; E) and obtain

h? d?
—ﬁﬁx(r;E)= Ex(r; E). (5)
We shall write this equation as
hox(r; E) = Ex(r; E), (6)
where
2 q2
o= o & ™

is the formal differential operator corresponding to the free Hamiltoniah €00).
Our goal is to solve Eg. (6) and show that its solutions lie in a RHS rather than just
in a Hilbert space.

The basic tool necessary to solve Eq. (6) is the Sturm—Liouville theory.
This theory provides the Hilbert space methods. As shown in many publications
(cf. de la Madrid, 2001a, and references therein), the Hilbert space methods do

2We shall use the Sturm-Liouville theory in the form that appears in the treatise of Dunford and
Schwartz (1963). Applications of the sturm—Liouville theory to simple potentials can be found in
several works (Banhdaset al., 1985; de la Madrid, 2001b, 2002; de la Madeidal., 2002; Engdahl
etal, 1985).
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not provide us with all the tools needed in Quantum Mechanics when continuous
spectrum is present. In particular, the Hilbert space cannot incorporate Dirac’s
bra-ket formalism. Therefore, an extension of the Hilbert space is needed. The
extension that seems to be most suitable is the RHS (cf. de la Madrid, 2001a, and
references therein). In particular, the RHS incorporates Dirac’s bra-ket formalism
(cf. de la Madrid, 2001a, and references therein).

The structure of the paper is as follows. In Section 2, we construct the domain
and the self-adjoint extension of the differential operator (7). In Section 3, we
obtain the free Green function, whose expression is used in Section 4 to calculate
the spectrum oHp. Section 5 is devoted to the eigenfunction expansion and the
direct integral decomposition of the Hilbert space. In Section 6, we construct the
RHS of Hy. The Dirac basis vector expansion idg is obtained in Section 7, and
the energy representation of the RHSHY is constructed in Section 8. Finally,
the results of the paper are summarized in the diagram of Eq. (73).

2. SELF-ADJOINT EXTENSION

The first step is to define a linear operator on a Hilbert space corresponding
to the formal differential operator (7). In the radial position representation, the
Hilbert space that belongs to the RHS of the free Hamiltonian is realized by the
spacelL?([0, o), dr) of square integrable functioni(r) defined on the interval
L2([0, c0), dr) (see the diagram (A1) in Appendix A).

The domainD(Hy) of the free Hamiltonian must be a proper dense linear
subspace of 2([0, o0), dr). The action ohg must be well defined o®(Ho), and
this action must remain ih?([0, oc), dr) . We need also a boundary condition
that assures the self-adjointness of the Hamiltonian. The boundary conditions that
select the possible self-adjoint extensionshgfare given by (see Dunford and
Schwartz, 1963, p. 1306)

f(0)+af'(0)=0, —oo< a < oo. 8)

Among all these boundary conditions, we chod¥@) = 0. Therefore, the re-
quirements that are to be fulfilled by the elements of the domakiyatre

f(r) e L([0, 00), dr), (9a)
ho f(r) € L2([0, c0), dr), (9b)
f(r) e AC[0, o), (9c)
f(0)=0, (9d)

where AC?[0, oo) denotes the space of functions whose derivative is absolutely
continuous (for details on absolutely continuous functions, consult de la Madrid,
2001a and Dunford and Schwartz, 1963). The requirements in Eq. (9) yield the
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domain ofHg:
D(Ho) = {f(r)I f(r), hof(r) € LZ([0, c0), dr),
f(r) € AC?[0, ), f(0) = 0}. (10)

On D(Ho) the formal differential operatdng is self-adjoint. In choosing (10) as
the domain of our formal differential operatig, we define a linear operatdty

by
h? d?
Hof(r) :=hof(r) = —5 -5 (1), () € D(Ho). (11)

3. RESOLVENT AND GREEN FUNCTION

The expression of the free Green functi@g(r, s; E) is given in terms of
eigenfunctions of the differential operatgrsubject to certain boundary conditions
(cf. Theorem 1 in Appendix A). We shall divide the complex energy plane in three
regions, and calculat®o(r, s; E) for each region separately. In all our calculations,
we shall use the following branch of the square root function:

V- {EeC|—-nm<argE)<n}— {(EecC|-n/2< argE) < n/2}. (12)

3.1. RegionR(E) < 0,J(E) # 0

For R(E) < 0,3(E) £ 0, the free Green function (see Theorem 1 in
Appendix A) is given by

2m/ b F(r;E)f(sE)

— r<s
ey A/—2m/ WE 2
GohsiB) =1 Yarw  zemice g
A/—2m/ WE 2
R(E) < 0,3J(E) # 0. (13)

The eigenfunctiony (r; E) satisfies the Scbdinger equation, Eq. (6), and the
boundary conditions

X(0;E) =0, (14a)
x(r; E) issquare integrable at 0, (14b)

which yield

2m

_2m - /=
)”((r;E):e\/ WEr—e\/FZEr, 0<r< oo. (15)
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The eigenfunctionf(r; E) satisfies the Scbdinger equation, Eq. (6), and the
boundary condition

f(r; E) is square integrable ab, (16)
which yield

—%Er

fr:E)=e , 0<r< oo (17)

The Wronskian ofy"and f can be easily calculated:

W(%, F)=—2,/—i—TE. (18)

3.2. RegionR(E) > 0,J(E) >0

WhenfR(E) > 0, J(E) > 0the expression of the free Green function is

2m/ h? . +(la
Go(r, s E) = 22;://:2E _ .
~ /am E xS E)T(;E) r>s
R(E) > 0,3(E) > O. (29)

The eigenfunction (r; E) satisfies Eq. (6) and the boundary conditions (14), which

yield
. 2m
X(r;E):sm(,/FEr), 0<r< oo. (20)

The eigenfunction *(r; E) satisfies Eq. (6) subject to the boundary condition (16),
which yield

f+(r;E)=eiVszEr, 0<r< oo (21)

The expression of the Wronskian pfand f + follows immediately from Egs. (20)
and (21):

2m

W(x, )= -/ ZE. (22)
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3.3. RegionR(E) > 0,J(E) < O
In the regiorR(E) > 0, J(E) < 0 the free Green function reads
WD (1 E)f(SE) r<s

Golr,S;E)={ V2WIE

/(s E)f(TE) r>s

- J2m/E

M(E) > 0,3(E) < O. (23)

The eigenfunctiory (r; E) is given by (20), although no belongs to the fourth
guadrant of the energy plane. The eigenfunctiorr ; E) satisfies Eq. (6) and the
boundary condition (16), which yield

_j /2m
f-(:E)=e VF", 0<r< oo (24)
The Wronskian ofy and f ~ is given by
2m
W(x, f7)=— ?E. (25)

4. SPECTRUM OF Hg

In this section, we obtain the spectrum M, which we shall denote by
Sp(Ho). We know thatHy is self-adjoint, and therefore its spectrum is real. In
order to obtain the set of real numbers that belong taigpfve apply Theorem 4
of Appendix A. From Theorem 4 and from the previous section, it is clear that
we should study the positive and the negative real lines separately. As expected,
we shall obtain that Sp{p) = [0, c0).

4.1. SubsetA = (—oo0,0)

We first takeA from Theorem 4 of Appendix A to be{oco, 0). We choose a
basis for the space of solutions of the equatigmn = Eo as

Gi(r E) = el WE, (26a)
6(r; E) = f(r; E). (26b)

Obviously,

x(r;E) =01(r; E) — o2(r; E), (27)
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which along with Eq. (13) leads to

Golr, 5; E) = —%%{&m; E) — 64 E)lao(s: E),
r<s,R(E)< 0,3(E) #0. (28)
Because
Ga(s; E) = 62(s; E), (29)
we can write Eqg. (28) as
Golr, s E) = —J% 1611 EYGA(S, B) — éalts E)AS: ED]
r<s,R(E)< 0,3(E) #0. (30)

On the other hand, by Theorem 4 in Appendix A we have

2 —
Go(r,S;E) = Y 6, (E)6i(r; E)5j(S;E), r<s. (31)
ij=1
By comparing Egs. (30) and (31) we see that

0__2mh 1

2F 2
6 E) =  VTEL] Mm(E)<o, JE)#o0. (32)

0 P

/—2m/ h’E

The functiong;; (E) are analytic in a neighborhood &f = (—oo, 0). Therefore,
the interval (oo, 0) is in the resolvent set, Ridf), of the operatoH,.

4.2. SubsetA = (0, c0)

In this case, we choose the following basis for the space of solutions of
hoo = Eo:

o1(r; E) = x(r; E), (33a)

oo(r; E) = cos(wlzh—TEr) . (33b)

Egs. (21), (24), and (33) lead to
f7(r; E) = io1(r; E) + 02(r; E) (34)
and to
f(r; E) = —iou(r; E) + o2(r; E). (35)
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By substituting Eq. (34) into Eq. (19) we get to

Go(r, s; E) = —Mo (s; E)lioa(r; E) + oo(r; E)]
o\, o - \/m 1\> i\, 2\, s
r>s,R(E)> 0,3(E)> 0. (36)
By substituting Eq. (35) into Eq. (23) we get to
2
Go(r, s, E) = _%:ZEQ(S E)[—ioa(r; E) + o2(r; E)],
r>s, RE)>0 JE)<O (37)
Because
o1(s; E) = o1(s; E), (38)
Eq. (36) leads to
2 -
Golt, s E) = —%EZEU 01(1; EYor(s: B) + oo(r; E)o(s: E))
R(E)> 0,3(E)> O,r > s, (39)
whereas Eq. (37) leads to
Go(r, s; E) = —\/%[—ial(r; E)oi(s; E) + o2(r; E)oi(s; E)],
R(E) > 0,J(E) < O,r > s. (40)

The expression of the resolvent in terms of the basgig, can be written as (see
Theorem 4 in Appendix A)

2 —
Go(r, SSE)= Y _ 6 (E)ai(r; E)oj(s;E), r>s. (42)
ij=1
By comparing (41) to (39) we get to

__2m/K? i - 2m/ W
Qij*(E)=< x/2r8/h2E «/261/th>, R(E)> 0, JE)>0 (42

By comparing (41) to (40) we get to

2m/ h? i 2m/ h?
eiT(E)z(ﬁm(/)h?E JZBw/hZE), M(E)> 0, JE)<O (43
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From Egs. (42) and (43) we can see that the meaguses,1 andp,, in Theorem 4
of Appendix A are zero, and that the measpreis given by
1 Eo—6
o o1 ey ot .
p11((E1, E2)) = yino GILrBL 211 Jeis [612(E —i€) — 075(E +i€)]dE
21 2m/r?

= | =L ¢
B T ./2m/n2E

E, (44)
which leads to

1 2m/n?
E) = E) = ———,
IO( ) 1011( ) T \/m
The functior;;(E) has a branch cut along (&), and therefore (0x) is included
in Sp(Ho). Because Sp{p) is a closed set, Splp) = [0, 00).

E € (0, o). (45)

5. DIAGONALIZATION AND EIGENFUNCTION EXPANSION

In the present section, we diagonalide and construct the expansion of the
wave functions in terms of the eigenfunctions of the differential opetator
By Theorem 2 of Appendix A, there is a unitary midp defined by

Uo : L2([0, 00), dr) — L?((0, 0), p(E)dE)
f(r) — f(E):Uof(E):/oodrf(r)X(r;E), (46)
0
that bringsD(Hg) onto the space

D(Ho) = {f(E) € L%(0, ), p(E)dE)]| fooodE E? f(E)?0(E) < o0}.

. (47)
The unitary operatdd, provides g-normalization (cf. de la Madridt al,, 2002).
In order to obtain &-normalization, the measugg E) must be absorbed in the
definition of the eigenfunctions (cf. de la Madrd al, 2002). This is why we
define

o(r; E) == vp(E)x(r; E), (48)
which is the-normalized eigensolution of the differential operdtgrif we define
f(E):=Vo(E)f(E), f(E) e LX(0,00), p(E)IE), (49)

and construct the unitary operator
Uo : L2((0, 00), p(E)dE) — L2((0, o0), dE)
f f(E)=Uof(E):=/p(E)f(E), (50)
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then the operator thatdiagonalizes our Hamiltonian iy := 0000,
L3([0, 00), dr) = L*((0, 00), dE)
f > Upf := f. (51)

The action olU, can be written as an integral operator:
f(E) = Uo f(E) =/ dr f(r)o(r; E), f(r) e L0, c0), dr). (52)
0

The image ofD(Hp) under the action dfg is

D(Ho) : = UD(Ho)
= {f(E) e L?((0, ), dE)| /OO E?| f(E)’dE < o0}.  (53)
0

Therefore, we have constructed a unitary operator
Uo : D(H) c LA([0, 00), dr) — D(Ho) C L((0, o0), dE)
fi> f=Upf (54)

that transforms from the position representation into the energy representation (see
diagram (73) Iater) The operatdg diagonalizes the free Hamiltonian in the sense
that Ho = Uo HOU0 is the multiplication operator. The inverse operatotJgfis

given by (see Theorem 3 of Appendix A)

f(r):Uolf(r)=/OoodEf(E)a(r;E), f(E) € L¥(0, 00), dE).  (55)

The operatorUO‘1 transforms from the energy representation into the position
representation (see diagram (73) later). The expressions (52) and (55) provide
the eigenfunction expansion of any square integrable function in terms of the
§-normalized eigensolutions(r ; E) of ho.

6. CONSTRUCTION OF THE RHS OF THE FREE HAMILTONIAN

The Sturm-—Liouville theory only provides a domaiiHp) on which the
HamiltonianHy is self-adjoint and a unitary operatd that diagnonalizesi,.
This unitary operator induces a direct integral decomposition of the Hilbert space
(cf. de la Madrid, 2001a, and references therein),

H > UOHEﬂ:@f H(E)dE
Sp(Ho)

f > Uof ={f(E)}, f(E)e H(E). (56)
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The direct integral decomposition does not provide us with all the tools needed in
Quantum Mechanics (Antoine, 1969a,b; de la Madrid, 2001a, 2002; de la Madrid
et al, 2002). This is why we extend the Hilbert space to the RHS.

We first need to construct a dense invariant dondgjion which all the powers
and all the expectaion values Hf, are well defined, and on which the Dirac kets
act as antilinear functionals. Before buildidg,, we need to build the maximal
invariant subspac®, of Ho,

Do = () D(Hg). (57)
n=0
It is easy to check that
Do = {g € L([0, 00), dr) | he(r) € LZ([0, cc), dr),
hoe(0)=0,n=0,1,2,...,¢(r) € C*([0, 00))}. (58)
We can now construct the subspakgon which the eigenkets) of Hg are well
defined as antilinear functionals. This subspace is given by

Bo = {go e Do|/ dri(r + 1)'(ho + 1"p(r)2 < oo,
0

n,m:0,1,2,...}. (59)

On &, we define the family of norms

lelnm:= \//Ooodﬂ(r + 1)"(hg + 1)™ep(r)|2, n,m=0,1,2,... (60)

The quantities (60) fulfill the conditions to be a norm (see Proposition 1 of
Appendix B) and can be used to define a countably normed topaiggyn ®¢

(for the definition of a countably normed topology, consult de la Madrid, 2001a
and references therein),

Yo =% @ iff g — @llm —> 0, N,M=0,1,2,... (61)

The spaced, is stable under the action d¢fp, and Hy is tg,-continuous (see
Proposition 2 of Appendix B).

Once we have constructed the spdggwe can construct its topological dual
®; as the space afp,-continuous antilinear functionals @y, (for details on the
dual space, consult de la Madrid, 2001a and references therein) and therewith the
RHS of the free Hamiltonian (see diagram (73) later):

® C L([0, 00), dr) C ®;. (62)
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For eachE € Sp(Hp), we can now associate a kdf) to the generalized
eigenfunctiors (r; E) through

|E)I‘I’o|—>(c

0> (9]E) = /0 T o EYdr = Uog(E). (63)

The ket|E) in Eq. (63) is a well-defined antilinear functional @, i.e., |E)
belongs to®; (see Proposition 3 of Appendix B). The Kéi) is a generalized
eigenvector of the free Hamiltoniaf, (see Proposition 3 of Appendix B):

HS|E) = E|E); (64)
that is,
(@IHXIE) = (H{9|E) = E(g|E), Vo € ®q. (65)

7. THE DIRAC BASIS VECTOR EXPANSION FOR Hg

We are now in a position to derive the Dirac basis vector expansion for the
free Hamiltonian. This derivation consists of the restriction of the Weyl-Kodaira
expansions (52) and (55) to the spdeg If we denote(r |¢) = ¢(r) and(E|r) =
o(r; E) and if we define the action of the bt&| on ¢ € ®¢ as(E|¢) := ¢(E)
then Eq. (52) becomes

(Elg) =/O dr(E[r)(rlp), ¢ € ®o. (66)

If we denote(r |E) = o(r; E) then Eqg. (55) becomes

<r|¢>=/0 dE(r|E)(Elg), ¢ € Po. (67)

This equation is the Dirac basis vector expansion of the wave fungtiorierms
of the free eigenketEE). We can also prove the Nucleat Spectral Theorem for the
free Hamiltonian (see Proposition 4 of Appendix B),

(¢, How) =/O dE E"(@|E)(E|¥), Vo, € By n=1,2,... (68)

8. ENERGY REPRESENTATION OF THE RHS OF Hop

We have already seen that in the energy represenatation, the Hamilkinian
acts as the multiplication operatbip. The energy representation of the spéee
is defined as

‘i’o = UpPy. (69)
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Obviously<i>o is a linar subspace df?([0, 00), dB). In oder to endowb, with a
topologyts,, we carry the topology o, into P,

Ty = U0T<I>0- (70)
With this topology, the spacéo is a linear topological space. If we denote the
dual space ofb, by @, , then we have
Ugs®% = (Up®o)* = @, . (71)
If we denote| E) = Uy |E), then we can prove thaﬁ) is the antilinear Schwartz
delta functional (see Proposition 5 of Appendix B),
IE): ® > C
¢ — (9IE) := 4(E). (72)

It is very helpful to show the different realizations of the RHS through the
following diagram:

Ho; ¢(r) ®o < L%[0,00),dr) < ®; |E) position repr.
I Uo I Uo I Uy (73)
Ho; @(E) @, c L2([0,00),dE) c &, |E) energy repr.

On the top line, we have the position representation of the Hamiltonian, the wave
functions, the kets, and the RHS. On the bottom line, we have their energy repre-
sentation counterparts.

9. CONCLUSIONS

We have constructed the RHS Hdf (for the zero angular momentum case),
and its energy representation. We have associated an eigénketeach energy
E in the spectrum oHy, and shown thatE) belongs to® . We have seen that the
energy representation ¢E) is given by the antilinear Schwartz delta functional.
We have also shown that the Dirac basis vector expansion holds within the RHS
of Ho.

Thus, we conclude that the natural framework for the solutions of the
Schigdinger equation oflg is the Rigged Hilbert Space rather than just the Hilbert
space.

APPENDIX A: THE STURM-LIOUVILLE THEORY

The following theorem provides the procedure to compute the Green function
of Hq (cf. Theorem XI11.3.16 of Dunford and Schwartz, 1963 and also de la Madrid,
20014, 2002; de la Madriet al, 2002 for some applications):
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Theorem 1. Let Hybe the self-adjoint operator (11) derived from the real formal
differential operator (7) by the imposition of the boundary condition (9d). Let
J(E) # 0. Then there is exactly one solutigrir; E) of (hg — E)o = 0 square-
integrable at 0 and satisfying the boundary condition (9d), and exactly one solution
f(r; E) of (hg — E)o = 0square-integrable at infinity. The resolvei — Hg)~*

is an integral operator whose kernely@®, s; E) is given by

2m x(r;E) f(s;E)
) r<s

Go(r, s E) = om GBI | 5 (A1)
2 WD '
where Wy, f)is the Wronskian of and f
W(x, f) = xf" —x'f. (A2)

The theorem that provides the operdtigrthat diagonalizesig is the follow-
ing (cf. Theorem XII1.5.13 of Dunford and Schwartz, 1963 and also de la Madrid,
20014, 2002; de la Madriet al., 2002 for some applications):

Theorem 2 (Weyl-Kodaira). Let hbe the formally self-adjoint differential op-
erator (7) defined on the intervad[ oo). Let Hy be the self-adjoint operator (11).

Let A be an open interval of the real axis, and suppose that there is given a set
{o1(r; E), o2(r; E)} of functions, defined and continuous(@oo) x A, such that

for each fixed E im\, {o1(r; E), o2(r; E)} forms a basis for the space of solutions

of hpo = Eo. Then there exists a positiZex 2 matrix measurgp;j } defined on

A, such that

1. the limit
d P —
(Uof)i(E) = liLnOdILmoo [/C f(r)oi(r; E)dr} (A3)

exists in the topology of AA, {p;;}) for each f in L%([0, co), dr)
and defines an isometric isomorphisng bf E(A)L?([0, oo), dr) onto
L2(A, {pi;}) whereE(A) is the spectral projection associated with

2. for each Borel function G defined on the real line and vanishing outside

UoD(G(Ho)) = ([ fil} € L*(A, {pij}) | [GFi] € LA(A, {0ij})}  (A4)
and
(UoG(Ho) f)i (E)
=G(E)(Uof)i(E), i =1,2, E€ A, f eD(G(Hp). (AD)

The theorem that provides the inverse of the opetdgds the following (cf.
Theorem XI11.5.14 of Dunford and Schwartz, 1963 and also de la Madrid, 2001a,
2002; de la Madricet al,, 2002 for some applications):
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Theorem 3 (Weyl-Kodaira). Let bl A, {pij} etc., be as in Theorem 2. LebE
and E, be the end points of. Then

1. the inverse of the isometric isomorphisrg &f E(A)L2([0, cc), dr) onto
L2(A, {pij}) is given by the formula

m [ 2
(UgtF)(r) = lim  lim / (Z Fi(E)oj(r; E)pij(dE)) (A6)
no—>Eoi—Ea J ) =1
where F=[Fy, F5] € L?(A, {pij}) the limit existing in the topology of
L?([0, o0), dr);
2. if G is a bounded Borel function vanishing outside a Borel set e whose
closure is compact and containedAn then G Hp) has the representation

G(Ho) f(r) = /(;oo f(s)K(Ho,r,s)ds, (A7)

where

2
K(Ho,r,s) = Z G(E)o(s; E)oj(r; E)pij (dE). (A8)
ij=17e
The spectral measures are provided by the following theorem (cf. Theorem
X111.5.18 of Dunford and Schwartz, 1963 and also de la Madrid, 2001a, 2002; de
la Madrid et al., 2002 for some applications):

Theorem 4(Titchmarsh-Kodaria). Lef be an open interval of the real axis and

O be an open set in the complex plane containing.et Re (H) be the resolvent
set of H. Let {o1(r; E), o2(r; E)} be a set of functions which form a basis for
the solutions of the equationyét = Eo, E € O and which are continuous on
(0, 00) x O and analytically dependent on E for E in O. Suppose that the kernel
Go(r, s; E) for the resolventE — Hp)~! has a representation

Y2167 (E)i(r; E)oi(s;E), r<s, "9

Go(r, s E) = : _
Zﬁj:l QiT(E)Ui (r;E)oj(s;E), r>s,

forall E inRe (Ho) N O, andthafp;; } is a positive matrix measure dnassociated
with Hp as in Theorem 2. Then the functi(ﬁifjé are analytic inRe (Hp) N O, and
given any bounded open interv@;, E;) C A we have forl <i, j <2,
I Y . :
B ED = I, 2 o (8 1) O (E i
Ex—s

— lim lim [6;(E —ie) — 6 (E +ig)]dE. (AL0)
%)

§—>0e—0+ 27Ti Ei+
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APPENDIX B: AUXILIARY PROPOSITIONS

Proposition 1. The quantities

lelinm:= \//Ooodrl(r + 1)"(ho + 1)™p(r)I?

pedo,n,m=0,1,2,..., (A11)

are norms.

Proof: Itis very easy to show that the quantities (A11) fulfill the conditions to
be a norm:

le + ¥lnm < llelnm+ ¥ lnm, (Al2a)
le@linm = Il ll@llnm, (A12b)
l¢llnm = O, (A12c)
Iflgllnm =0, theng = O. (A12d)

The only condition that is somewhat difficult to prove is (A12d){|¢f|ln.m = O,
then

(L+71)"(ho + 1)"e(r) =0, (A13)
which yields
(ho + 1)Mp(r) = 0. (A14)

If m =0, then Eq. (A14) implieg(r) = 0. If m = 1, then Eq. (A14) implies that
—1is an eigenvalue dfly whose corresponding eigenvectopisSince—1 is not
an eigenvalue oHg, ¢ must be the zero vector. i > 1, the proof is similar. O

Proposition 2. The spaceb is stable under the action ofddand H is g,-
continuous.

Proof: In order to see thaktl is rg, -continuous, we just have to realize that

[Ho@llnm = [I(Ho + ¢ — ¢llnm
< I(Ho + Dellnm + ll¢linm
= ll¢llnms1 + ll@lnm- (A15)

We now prove thafp, is stable under the action &fy. Let ¢ € ®(. Saying that
@ € Pgis equivalent to saying that € Dy and that the normigp ||, m are finite for
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everyn,m=0, 1, 2,... SinceHog is also inDyp, and since the normsH®||n.m
are also finite (see Eq. (A15)), the vectdgy is also in®o. O

Proposition 3. The function
|E) P~ C

> (glE) = /O 0ol E)dr = Tog)(E).  (AL6)

is an antilinear functional oy and a generalized eigenvector of (the restriction
to ®g Of) Ho.

Proof: From the definition (A16), it is pretty easy to see tfa} is an antilinear
functional. In order to show thaE) is continuous, we define

M(E) := sup |o(r; E)|. (A17)

r€[0,00)

Because
l{@|E)| = |Ug(E)|

= ’/wdrma(r; E)’
0

5/0°°dr|m||a(r;5)|

< M(E)/0 drie(r)|

o0 1
:M(E)/O dr o (@ Do)

<M(E)</ o|r(1+ )2>1/2</ dri(1+r)e(r)| )1/2

o 1 1/2
= M(E) (/0 drm) lell1,o

= M(BE)ll¢ll1,0 (A18)

the functional E) is continuous whe®, is endowed with thes, topology.
In order to prove thatE) is a generalized eigenvector bf,, we make use of
the conditions (58) and (60) satisfied by the elemen®gf

(@IHS |E) = (Hd@|E)

00 2 d2_
=/O dr <_;_mﬁ‘p(r)>a(“E)
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do®) 1" dff(r E)
2m|: dr (r’E)i|0 * om [ ") ]0

00 o h2 d2
+[O dr<p(r)< >m dza(r E))

= E(¢|E). (A19)
Similarly, one can also prove that

(@l(H§)"|E) = E™(g|E). (A20)

|

Proposition 4. (Nuclear Spectral Theorem). Let
@ C L([0, 00), dr) C ¥ (A21)

be the RHS of Hsuch that®, remains invariant under fand H is a s, -
continuous operator o®,. Then, for each E in the spectrum of, khere is a
generalized eigenvectoE) such that

Ho'|E) = E|E) (A22)
and such that
(0, w:/ dE(IENEIY), Vo, v € Bo, (A23)
SpHo)

and

(o, HW):/S(H)dE EY(@|E)(E|Y), Vo,¢¥ € ®o,n=1,2,... (A24)
P{Ho,

Proof: Letg andyr be in®,. SinceUy is unitary,

(@, ¥) = (Uop, Uo¥) = (&, ¥). (A25)

The wave functiong andy arein particular elements bf ([0, oo), dE). Therefore
their scalar product is well defined,

. 9) = / dEF(E)i (E). (A26)
Sp(Ho)

Becausep andy belong to®,, the action of each eigenkdE) on them is well
defined,
(p|E) = ¢(E), (A27a)
(Ely) = ¥(E). (A27b)
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By plugging Eq. (A27) into Eq. (A26) and Eq. (A26) into Eq. (A25), we obtain
Eqg. (A23). The proof of (A24) is similar:

(¢, HYW) = (Uog, UoHiU, "Uoy)
= (¢, H3W)

dEG(E)(HJv)(E)
pHo)

—_

ASH)

I
G

dE E"G(E)¥)(E)

Il
R

Sp(Ho)
=/ dE E"(¢|E)(E|y). (A28)
Sp(Ho)
O

Proposition 5. The energy representation of the eigenkg} is the antilinear
Schwartz delta functionaE).

Proof: Because

(@IU|E) = (Uy'@IE)

= (p|E)
= / o(r)o(r; E)dr
0
= ¢(E), (A29)
the functionally |E) = |E) is the antilinear Schwartz delta functional. O
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